# Part 33 - Tensile Test Mesh Generator according to ISO 6892 / DIN 50125

With the new Tensile Test Mesh Generator of the FEM System MEANS V12 (<u>www.fem-infos.com</u>) it is possible to generate tensile test models create of linear or quadratical hexahedrons, pentahedrons or tetrahedrons fully automatically with a few key data and to calculate them non-linearly with a stress-strain diagram.

#### **Round Tensile Samples:**



#### Flat Tensile Samples:



**Tensile Sample:** 



#### Entering the key data in the tensile test dialog box:

Select the "Mesh Generation" tab and the "TENSILE TEST" submenu and enter the following key data for the tensile test shown above:

| Mesh Ger        | neration Edit FEM-Pro | ject FEM-Analysis Postproc  | essing Training                             |                                      |
|-----------------|-----------------------|-----------------------------|---------------------------------------------|--------------------------------------|
| erators<br>nent |                       | QUAD-Meshes, Refine, Delete | Check Node Numbering<br>Jacobi-Determinante | SOLIDGEN VESSEL<br>TENSILE TEST FEMM |
| 1 Fa            | 2D Mesh Generation 🕞  | Manipulate Meshes 🕞         | Check Meshes 🛛 🖓                            | Mesh Generators 🖓                    |

| $d_0$          | Probendurchmesser        | = | 8   |
|----------------|--------------------------|---|-----|
| $d_1$          | Kopfdurchmesser          | = | 20  |
| h              | Kopfhöhe                 | = | 30  |
| r              | Übergangsradius          | = | 3.5 |
| Lo             | Anfangsmesslänge         | = | 50  |
| $L_{\rm c}$    | Parallele Länge          | = | 88  |
| Lt             | Gesamtlänge              | = | 155 |
| $d_2$          | Durchmesser des Ansatzes | = | 0   |
| g              | Länge des Ansatzes       | = | 0   |
| a <sub>0</sub> | Probendicke              | = | 0   |
| $b_0$          | Probenbreite             | = | 0   |
| В              | Kopfbreite               | = | 0   |

Select the "Create Tensile Sample with SOLIDGEN" button

Create Tensile Sample with SOLIDGEN

to generate the tensile sample using the SOLIDGEN mesh generator with 6 cylinders and mesh density:

Number of nodes in the radial direction X-ND = 6 Number of nodes around the circumference Y-ND = 24 Number of 2D meshes in the Z direction Z-ND = 10

#### Part 33 - Tensile Test Mesh Generator according to ISO 6892 / DIN 50125

| Mesh-Density:  | X-ND-C     | YL:   | 6 Y-N  | D-CYL:   | 24 | Z-ND-CYL  | : 10 |       | X-ND-QU: | 0    |   |
|----------------|------------|-------|--------|----------|----|-----------|------|-------|----------|------|---|
| Number of Elem | ent Groups | s: 6  | ✓ Star | t-Angel: | 0  | End-Angel | 360  |       | Y-ND-QU: | 0    |   |
| Zylinder 1     |            |       |        |          |    |           |      |       |          |      |   |
| Di:            | 0          | Da:   | 8      | X-MP: [  | 0  | Y-MP:     | 0    | X-V4: | 0        | NGR: | 1 |
| Z-MP:          | 0          | Z- L: | 30     | X-V3: [  | 8  | Y-V3:     | 0    | Y-V4: | 0        | Name |   |
| Zylinder 2     |            |       |        |          |    |           |      |       |          |      |   |
| X-V1:          | 8          | Y-V1: | 20     | X-V2:    | 0  | Y-V2:     | 0    | X-V4: | 0        | NGR: | 1 |
| Z-MP:          | 0          | Z-L:  | 30     | X-V3:    | 20 | Y-V3:     | 0    | Y-V4: | 0        | Name |   |
| Zylinder 3     |            |       |        |          |    |           |      |       |          |      |   |
| Di:            | 0          | Da:   | 8      | X-MP:    | 0  | Y-MP:     | 0    | X-V4: | 0        | NGR: | 1 |
| Z-MP:          | 30         | Z-L:  | 3.5    | X-V3:    | 8  | Y-V3:     | 0    | Y-V4: | 0        | Name |   |
| Zylinder 4     |            |       |        |          |    |           |      |       |          |      |   |
| Di:            | 8          | Da:   | 20     | X-MP:    | 0  | Y-MP:     | 0    | X-V4: | 0        | NGR: | 1 |
| Z-MP:          | 30         | Z:    | 3.5    | X-V3:    | 8  | Y-V3:     | 0    | Y-V4: | 0        | Name |   |
| Zylinder 5     |            |       |        |          |    |           |      |       |          |      |   |
| Di:            | 0          | Da:   | 8      | X-MP:    | 0  | Y-MP:     | 0    | X-V4: | 0        | NGR: | 1 |
| Z-MP:          | 33.5       | Z-L:  | 19     | X-V3:    | 8  | Y-V3:     | 0    | Y-V4: | 0        | Name |   |
| Zylinder 6     |            |       |        |          |    |           |      |       |          |      |   |
| Di:            | 0          | Da:   | 8      | X-MP:    | 0  | Y-MP:     | 0    | X-V4: | 0        | NGR: | 2 |
| Z-MP:          | 52.5       | Z-L:  | 25     | X-D:     | 8  | Y-D:      | 0    | Y-V4: | 0        | Name |   |

Select menu "HEX8 Meshing" to create a linear FEM model from 6480 HEX8 and 923 PEN6 elements as well as 6637 nodes and 3 element groups.



|        |      | HEX8 MESHI | NG     |
|--------|------|------------|--------|
| MIRROF | ۶ [  | HEX8->TET4 | REFINE |
|        | Save | load       | Cancel |

#### Mirror model

Select "Mirror" menu to create a FEM model from 12,960 HEX8 elements and 13,153 nodes and 3 element groups.



#### **TET4 Model**

Select the menu "HEX8->TET4" to convert the FEM model into a tetrahedral mesh.

#### Refine

Select the "Refine" menu to create an 8x finer mesh from the tetrahedral mesh

#### Increase in accuracy

For higher accuracy, the FEM model can later be converted into TET10 or HEX20 and PEN15 mesh in the quick solver.

#### **Generate Load Cases**

In the tensile test dialog box, define an increasing axial load in the Z direction with a starting load of 6000 N and a load increase of 500 N and 15 load increments at the top of the tensile test at Z = 0 mm.

Select "Insert" to be able to examine the area of the yield point in more detail with finer load case steps, for example.



#### Generate boundary conditions

At the end of the tensile sample, define a clamping in the X, Y and Z directions with a clamping depth of 25 mm.



#### Generate material data

Define with an elastic modulus of 210,000 N/mm<sup>2</sup> and a Poisson's ratio of 0.3 for the material steel, which is always preset.

#### Nonlinear FEM Analysis

Select the "FEM Analysis" tab and "Material Nonlinear" menu.



Select the FEM analysis "Nonlinear with Hardening Isotropic" and the stress-strain diagram "STEEL NORMAL".

| Plastische Verformungen                                                                 |                                  |       |                    | × |
|-----------------------------------------------------------------------------------------|----------------------------------|-------|--------------------|---|
| Material Law:                                                                           |                                  |       |                    |   |
| 🔘 Linear Elastic                                                                        |                                  |       |                    |   |
| Nonlinear with Hardening Isotrop                                                        |                                  |       |                    |   |
| O Nonlinear with Hardening Kinem                                                        | atic                             |       |                    |   |
| O Nonlinear with Hardening Combi                                                        | ned                              |       |                    |   |
| Select a Stress-Strain-Curve from                                                       | the Database                     |       | Edit               |   |
| Select a Stress-Strain-Curve from<br>Plot Stress-Strain-Curve                           | the Database<br>Plot Stress-Disp | lacem | Edit<br>ient-Curve |   |
| Select a Stress-Strain-Curve from<br>Plot Stress-Strain-Curve<br>Material: STEEL NORMAL | the Database<br>Plot Stress-Disp | lacem | Edit<br>ent-Curve  |   |

Select "Plot Stress-Strain Curve" to display the stress-strain curve:



#### STEEL NORMAL

The displacements and stresses increase linear up to the yield strength of 190 N/mm<sup>2</sup> (= Hook's straight line), then the plastic deformations begin with a flattening of the curve, i.e. the strains increase more than the stresses.

The curve can also be edited using any text editor and "Edit" menu:

STEEL NORMAL

| 0.00000000E+00  | 1.9400000D+02  |
|-----------------|----------------|
| 0.077700000E+00 | 3.11210000D+02 |
| 0.155500000E+00 | 3.59950000D+02 |
| 0.233000000E+00 | 3.96540000D+02 |
| 0.311000000E+00 | 4.23890000D+02 |
| 0.388000000E+00 | 4.45580000D+02 |
| 0.466000000E+00 | 4.63940000D+02 |
| 0.544000000E+00 | 4.80260000D+02 |
| 0.622000000E+00 | 4.94950000D+02 |
| 0.699000000E+00 | 5.08310000D+02 |
| 0.777000000E+00 | 5.20260000D+02 |
| 0.855000000E+00 | 5.31420000D+02 |
| 0.933000000E+00 | 5.41870000D+02 |
| 1.011000000E+00 | 5.51710000D+02 |
| 1.088000000E+00 | 5.60910000D+02 |
| 1.166000000E+00 | 5.69560000D+02 |
| 1.244000000E+00 | 5.77820000D+02 |
| 1.322000000E+00 | 5.85720000D+02 |
| 1.399000000E+00 | 5.93280000D+02 |
|                 |                |

-END-

#### Start Quick Solver

Select the "START NONLINEAR FEM ANALYSIS" button to start the quick solver with the setting "C3D8 (8-node linear isoparametric element)".

|   | 🔛 Quick-Solver       |                                                                                                                                                                                            | - 🗆 X   |                                        |
|---|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|
|   | Normal Precision     | <ul> <li>C3D8 (8-node linear isoparametric element)</li> <li>show C3D4 and solve intern with a refining mesh of 8 x C3D4</li> <li>C3D20 (20-node quadric isoparametric element)</li> </ul> |         |                                        |
|   | Path for INP-Solver: | C:\Program Files\FEM-System_MEANS_V12\Debug\inpsolver\inpsolver64bit_                                                                                                                      | Browser | the step step step step step step step |
| E | Path for INP Files:  | C:\projekte\nonlinear\solidgen\probe8a.INP                                                                                                                                                 | ]       |                                        |
| - |                      | Select Solver   In-Core-Solver  Out-of-Core-Solver                                                                                                                                         |         |                                        |
|   |                      | Start FEM-Solver with INP-Interface                                                                                                                                                        |         |                                        |
|   |                      | Show and edit last INP Resolve last INP                                                                                                                                                    |         |                                        |
|   |                      | Setting Help + Infos Cancel                                                                                                                                                                |         |                                        |

#### Stress-strain diagram for element group 2

Use the "Edit FEM project" tab to only show element group 2 so that only the results of the Gage Length L0 and no secondary stresses are evaluated.



#### Show Stress-Strain diagram

After the nonlinear FEM calculation, you can first display the important stress-strain curve using the "Postprocessing" and "Stress-strain diagram" tabs.

| E | dit FEM-Project                               | FEM-A | nalysis             | Postprocessing |           |  |
|---|-----------------------------------------------|-------|---------------------|----------------|-----------|--|
| T | Legend 1                                      | Dis   | Displacement-Factor |                |           |  |
|   | List Table                                    | 1     | ctor/Ani            | mation 12      | List File |  |
|   | Diagram 1<br>Stress-Strain-Dia<br>New Diagram | gramm |                     |                |           |  |

#### Set Gage Length L0

Enter the Gage Length = 50 mm in the dialog box and select the "Start" button so that the Displacements, v.Mises Stress and the Load per load increment are read and clearly displayed in the table.

In addition, the strains are output from the displacements divided by L0.

| Anzahl La<br>Ausgangs                                                               | ung eines Spannu<br>Istfälle = 15<br>Ilänge L0 = 50                                                                                    | ngs-Dehnungs-Diag<br>Knoten für<br>Knoten für                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ramms<br>Verfomungen = M<br>Spannungen = M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ax ∨<br>ax ∨<br>v.Mises                                                                                                                                                                                                       | <ul> <li>✓ FEM-File:</li> <li>✓ Result-File:</li> </ul>                                                                                                                                                                                                        | C:\projekte\non<br>C:\projekte\non                                                                                                             | linear\solidgen\probe8<br>linear\solidgen\probe8                                                                                                                                                                                                       | fem<br>FRD                                    |                                               | - 0                                                                                                                                                          | × |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| LF<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | Knoten<br>1002<br>520<br>519<br>519<br>517<br>1016<br>519<br>527<br>283<br>283<br>283<br>283<br>283<br>283<br>283<br>283<br>283<br>283 | X-Verformung<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>52<br>-0.03456 | Y-Verformung<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>-0.01255<br>-0.012555<br>-0.034556 | Z-Verformung<br>0.04025<br>0.04361<br>0.04596<br>0.05332<br>0.05332<br>0.05379<br>0.05379<br>0.05379<br>0.05379<br>0.05401<br>0.05401<br>0.05401<br>0.04001<br>0.34601<br>0.34601<br>0.34601<br>2.38949<br>2.48945<br>2.88215 | Dehnung=Verf./L0<br>000872174<br>000872174<br>000872174<br>00106354<br>00107836<br>001278722<br>00522028<br>00522028<br>00532028<br>00532028<br>00532028<br>00532028<br>0053204<br>0053204<br>0053204<br>0053204<br>0053204<br>0053204<br>00530805<br>00557643 | Knoten<br>6990<br>283<br>6906<br>6905<br>6905<br>6908<br>6908<br>6908<br>6908<br>6908<br>6982<br>482<br>482<br>489<br>489<br>489<br>490<br>490 | Spannung           120,74           130,80           140,86           150,92           160,98           171,04           181,10           191,17           201,18           211,20           231,26           241,30           251,35           261,39 | Last FX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | Last FY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | Last FZ<br>6000.01<br>6590.02<br>6999.98<br>7999.98<br>8999.99<br>999.99<br>10000.00<br>10499.98<br>11009.00<br>11499.98<br>12000.03<br>12499.99<br>13000.04 |   |
| Fert                                                                                | ig, die Diagramme kö                                                                                                                   | innen nun dargestellt v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | verden!<br>Anhalten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diagr                                                                                                                                                                                                                         | am-Beispiele                                                                                                                                                                                                                                                   | Diagramm (                                                                                                                                     | darstellen und auswähle                                                                                                                                                                                                                                | en mit Stre                                   | ss-Strain                                     | ~                                                                                                                                                            |   |

#### Stress-Strain diagram

Select the "Plot Diagram with Selection" button as well "Stress-Strain" to display the diagram with GNUPLOT.



The plastic deformations begin at the yield strength of 190 N/mm<sup>2</sup>



#### Load-Strain diagram

Select the "Plot Diagram with Selection" button as well "Load-Strain" to display the diagram with GNUPLOT.



The plastic deformations begin at an axial load of 9500 N



# Stress-Displacement diagram

Select the "Plot Diagram with Selection" button as well "Stress-Displacement" to display the diagram with GNUPLOT.



Stress-Displacement-Diagram of the FE-Project: C:\projekte\nonlinear\solidgen\probe8.fem

#### Load-Displacement diagram

Select the "Plot Diagram with Selection" button as well "Load-Displacement" to display the diagram with GNUPLOT.



#### **Stress Distribution**

Select the "Postprocessing" and "Nodal Stresses" tab to display the v.Mises stress or displacement distribution for load cases 1-15.

#### Load Case 1

#### v.Mises Stress = 128 N/mm<sup>2</sup>



#### **Nonlinear-Animation**

Select the "Postprocessing" and "Nonlinear-Animation" tabs to animate all load cases one after the other.

| E | Edit FEM-Project FE              | EM-Analysis                                                                 | Postpro                                           | cessing           |
|---|----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|-------------------|
|   | Legend 1 -<br>Stress-Strain-Di - | Displacement<br>Value-Animat                                                | -Factor                                           | FEM INI<br>STA FR |
|   | Legend/Diagram 🕞                 | Value-Anima<br>Scale-Anima<br>Nonlinear-Anima<br>Temperature<br>DXF-Postpro | ition<br>tion<br>nimation<br>-Animatic<br>cessing | List Files        |

### Load Case 15

v.Mises Stress = 261 N/mm<sup>2</sup>

| LASTFALL= 15                  | 🔡 Nonlinear-Animation | - 🗆 X |  |
|-------------------------------|-----------------------|-------|--|
| Vergleichsspannung<br>v.Mises |                       | Cuit  |  |
| 261.40                        |                       |       |  |
| 221.45                        |                       |       |  |
| 184.10                        |                       |       |  |
| 146.76                        |                       |       |  |
| 109.42                        |                       |       |  |
| 72.073                        |                       |       |  |
| 34.729                        |                       |       |  |
| 0.0000                        |                       |       |  |
| Bearbeiten : +                |                       |       |  |

## Displacements in Z direction = 3.73 mm

